Recursive estimation of nonparametric regression with functional covariate
نویسندگان
چکیده
The main purpose of this work is to estimate the regression function of a real random variable with functional explanatory variable by using a recursive nonparametric kernel approach. The mean square error and the almost sure convergence of a family of recursive kernel estimates of the regression function are derived. These results are established with rates and precise evaluation of the constant terms. Also, a central limit theorem for this class of estimators is established. The method is evaluated on simulations and a real data set study.
منابع مشابه
Nonparametric estimation of conditional quantiles using quantile regression trees
A nonparametric regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning of the covariate space is investigated. Unlike least squares regression trees, which concentrate on modeling the relationship between the response and the covariates at the center of the response distribution, our quantile...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملNonparametric Identication and Estimation of Nonclassical Errors-in-Variables Models Without Additional Information
This paper considers identi cation and estimation of a nonparametric regression model with an unobserved discrete covariate. The sample consists of a dependent variable and a set of covariates, one of which is discrete and arbitrarily correlates with the unobserved covariate. The observed discrete covariate has the same support as the unobserved covariate, and can be interpreted as a proxy or m...
متن کاملThe finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation
The Finite Sample Performance of Semiand Nonparametric Estimators for Treatment Effects and Policy Evaluation This paper investigates the finite sample performance of a comprehensive set of semiand nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 69 شماره
صفحات -
تاریخ انتشار 2014